A. Tujuan
Adapun tujuan dari mengetahui komponen-komponen elektronika adalah agar kita dapat membedakan jenis-jenis, bentuk dan kegunaan dari setiap komponen-komponen elektronika.
Komponen elektronika mempunyai bentuk atau simbol-simbol tersendiri serta komponen elektronika terbagi menjadi 2 jenis yaitu komponen aktif dan komponen pasif.
B. Komponen aktif
Komponen aktif ialah merupakan penggerak dari semua rangkaian, komponen aktif bekerja sangat memerlukan arus.
Adapun contoh dari
komponen aktif ini adalah :
1. Transistor
2. FET (Field Effect Transistor)
3. UJT (Uni Junction Transistor)
4. IC (Integrated Circuit) dll
Komponen-komponen di atas bekerja tergantung pada arus yang masuk, tergantung pada jenis komponen dan kekuatan dari komponen.
C. Komponen Pasif
Komponen pasif adalah komponen yang bekerjanya tidak memerlukan arus. Komponen pasif bahkan dapat memperkecil arus yang masuk, adapun contoh dari komponen ini adalah :
1. Resistor
2. Potensiometer
3. Trafo Input (In)
4. Trafo Output (Out)
5. Kondensor / Kapasitor
6. Trafo Senvor Spoel
7. Timer, dll
Komponen-komponen ini sangat besar pengaruhnya pada komponen elektronika.
D.
SEMIKONDUKTOR
Pengertian Umum
Disebut semi atau setengah konduktor, karena bahan ini memang bukan konduktor murni. Bahan – bahan logam seperti tembaga, besi, timah disebut sebagai konduktor yang baik sebab logam memiliki susunan atom yang sedemikian rupa, sehingga elektronnya dapat bergerak bebas.
Sebuah atom tembaga (Cu) memiliki inti 29 ion positif (+) dikelilingi oleh 29 elektron (-). Sebanyak 28 elektron menempati orbit-orbit bagian dalam membentuk inti yang disebut nucleus. Dibutuhkan energi yang sangat besar untuk dapat melepaskan ikatan elektron-elektron ini. Satu buah elektron lagi yaitu elektron yang ke-29, berada pada orbit paling luar.
Orbit terluar ini disebut pita valensi dan elektron yang berada pada pita ini dinamakan elektron valensi. Karena hanya ada satu elektron dan jaraknya ‘jauh’ dari nucleus, ikatannya tidaklah terlalu kuat. Hanya dengan energi yang sedikit saja elektron terluar ini mudah terlepas dari ikatannya.
ikatan atom tembaga
Isolator adalah atom yang memiliki elektron valensi sebanyak 8 buah, dan dibutuhkan energi yang besar untuk dapat melepaskan elektron-elektron ini. Dapat ditebak, semikonduktor adalah unsur yang susunan atomnya memiliki elektron valensi lebih dari 1 dan kurang dari 8. Tentu saja yang paling “semikonduktor” adalah unsur yang atomnya memiliki 4 elektron valensi.
Susunan Atom Semikonduktor
Bahan semikonduktor yang banyak dikenal contohnya adalah Silicon (Si), Germanium (Ge) dan Galium Arsenida (GaAs). Germanium dahulu adalah bahan satu-satunya yang dikenal untuk membuat komponen semikonduktor. Namun belakangan, silikon menjadi popular setelah ditemukan cara mengekstrak bahan ini dari alam. Silikon merupakan bahan terbanyak ke dua yang ada dibumi setelah oksigen (O2).
Struktur dua dimensi kristal Silikon
DOPING
Pemberian doping dimaksudkan untuk mendapatkan elektron valensi bebas dalam jumlah lebih banyak dan permanen, yang diharapkan akan dapat mengahantarkan listrik
Tipe-N
Bahan silikon diberi doping phosphorus atau arsenic yang pentavalen yaitu bahan kristal dengan inti atom memiliki 5 elektron valensi. Dengan doping, Silikon yang tidak lagi murni ini (impurity semiconductor) akan memiliki kelebihan elektron. Kelebihan elektron membentuk semikonduktor tipe-n. Semikonduktor tipe-n disebut juga donor yang siap melepaskan elektron.
Tipe-P
Kalau silikon diberi doping Boron, Gallium atau Indium, maka akan didapat semikonduktor tipe-p. Untuk mendapatkan silikon tipe-p, bahan dopingnya adalah bahan trivalen yaitu unsur dengan ion yang memiliki 3 elektron pada pita valensi. Karena ion silikon memiliki 4 elektron, dengan demikian ada ikatan kovalen yang bolong (hole). Hole ini digambarkan sebagai akseptor yang siap menerima elektron. Dengan demikian, kekurangan elektron menyebabkan semikonduktor ini menjadi tipe-p.
DIODA
1. Teori Dasar
Dioda ialah jenis
VACUUM tube yang memiliki dua buah elektroda. Dioda tabung pertama kali diciptakan oleh seorang ilmuwan dari Inggris yang bernama Sir J.A. Fleming (1849-1945) pada tahun 1904.
Gambar 3.1 Struktur Dioda
Struktur dan skema dari dioda dapat dilihat pada gambar di atas.
Pada dioda, plate diletakkan dalam posisi mengelilingi katoda sedangkan heater disisipkan di dalam katoda. Elektron pada katoda yang dipanaskan oleh heater akan bergerak dari katoda menuju plate.
Untuk dapat memahami bagaimana cara kerja dioda kita dapat meninjau 3 situasi sebagai berikut ini yaitu :
Dioda diberi tegangan nol
Dioda diberi tegangan negative
Dioda diberi tegangan positive
• Dioda Diberi Tegangan Nol
Gambar 3.2. Dioda Diberi Tegangan Nol
Ketika dioda diberi tegangan nol maka tidak ada medan listrik yang menarik elektron dari katoda. Elektron yang mengalami pemanasan pada katoda hanya mampu melompat sampai pada posisi yang tidak begitu jauh dari katoda dan membentuk muatan ruang (Space Charge). Tidak mampunya elektron melompat menuju katoda disebabkan karena energi yang diberikan pada elektron melalui pemanasan oleh heater belum cukup untuk menggerakkan elektron menjangkau plate.
• Dioda Diberi Tegangan Negative
Gambar 3.3 Dioda Diberi Tegangan Negative
Ketika dioda diberi tegangan negatif maka potensial negatif yang ada pada plate akan menolak elektron yang sudah membentuk muatan ruang sehingga elektron tersebut tidak akan dapat menjangkau plate sebaliknya akan terdorong kembali ke katoda, sehingga tidak akan ada arus yang mengalir.
• Dioda Diberi Tegangan Positive
Gambar 3.4 Dioda Diberi Tegangan Positive
Ketika dioda diberi tegangan positif maka potensial positif yang ada pada plate akan menarik elektron yang baru saja terlepas dari katoda oleh karena emisi thermionic, pada situasi inilah arus listrik baru akan terjadi. Seberapa besar arus listrik yang akan mengalir tergantung daripada besarnya tegangan positif yang dikenakan pada plate. Semakin besar tegangan plate akan semakin besar pula arus listrik yang akan mengalir.
Oleh karena sifat dioda yang seperti ini yaitu hanya dapat mengalirkan arus listrik pada situasi tegangan tertentu saja, maka dioda dapat digunakan sebagai penyearah arus listrik (rectifier). Pada kenyataannya memang dioda banyak digunakan sebagai penyearah tegangan AC menjadi tegangan DC.
2. Karakteristik Dioda
Hampir semua peralatan elektronika memerlukan sumber arus searah. Penyearah digunakan untuk mendapatkan arus searah dari suatu arus bolak-balik. Arus atau tegangan tersebut harus benar-benar rata tidak boleh berdenyut-denyut agar tidak menimbulkan gangguan bagi peralatan yang dicatu.
Dioda merupakan piranti non-linier karena grafik arus terhadap tegangan bukan berupa garis lurus, hal ini karena adanya potensial penghalang (Potential Barrier).
Ketika tegangan dioda lebih kecil dari tegangan penghambat tersebut maka arus dioda akan kecil, ketika tegangan dioda melebihi potensial penghalang arus dioda akan naik secara cepat
Dioda sebagai salah satu komponen aktif sangat popular digunakan dalam rangkaian elektronika, karena bentuknya sederhana dan penggunaannya sangat luas. Ada beberapa macam rangkaian dioda, diantaranya : penyearah setengah gelombang (Half-Wave Rectifier), penyearah gelombang penuh (Full-Wave Rectifier), rangkaian pemotong (Clipper), rangkaian penjepit (Clamper) maupun pengganda tegangan (Voltage Multiplier).
Di bawah ini merupakan gambar yang melambangkan dioda penyearah.
Sisi Positif (P) disebut Anoda dan sisi Negatif (N) disebut Katoda. Lambang dioda seperti anak panah yang arahnya dari sisi P ke sisi N. Karenanya ini mengingatkan kita pada arus konvensional dimana arus mudah mengalir dari sisi P ke sisi N.
Tegangan Kaki (Knee Voltage)
Adalah Tegangan pada saat arus mulai naik secara cepat pada saat dioda berada pada daerah maju, tegangan ini sama dengan tegangan penghalang.
Apabila tegangan dioda lebih besar dari tegangan kaki maka dioda akan menghantar dengan mudah dan sebaliknya bila tegangan dioda lebih kecil maka dioda tidak menghantar dengan baik
Hambatan Bulk
Di atas tegangan kaki, arus dioda akan membesar secara cepat, dengan kata lain pertambahan yan kecil pada tegangan dioda akan menyebabkan perubahan yang besar pada arus dioda.
Setelah tegangan penghalang terlampaui, yang menghalangi arus adalah hambatan Ohmic daerah P dan N, Jumlah hambatan tersebut dinamakan Hambatan Bulk
Dioda Ideal
Secara sederhana, dioda akan menghantar dengan baik pada arah maju dan kurang baik pada arah balik, Secara ideal, dioda akan berperilaku seperti penghantar sempurna artinya dioda akan memiliki hambatan nol pada saat diberi catu maju dan hambatan tak terhingga saat dicatu balik
Dioda terbagi atas beberapa jenis antara lain :
o Dioda germanium
o Dioda silikon
o Dioda selenium
o Dioda zener
o Dioda cahaya (LED)
Dioda termasuk komponen elektronika yang terbuat dari bahan semikonduktor. Beranjak dari penemuan dioda, para ahli menemukan juga komponen turunan lainnya yang unik. Dioda memiliki fungsi yang unik yaitu hanya dapat mengalirkan arus satu arah saja. Struktur dioda tidak lain adalah sambungan semikonduktor P dan N. Satu sisi adalah semikonduktor dengan tipe P dan satu sisinya yang lain adalah tipe N. Dengan struktur demikian arus hanya akan dapat mengalir dari sisi P menuju sisi N.
Gambar ilustrasi di atas menunjukkan sambungan PN dengan sedikit porsi kecil yang disebut lapisan deplesi (depletion layer), dimana terdapat keseimbangan hole dan elektron. Seperti yang sudah diketahui, pada sisi P banyak terbentuk hole-hole yang siap menerima elektron sedangkan di sisi N banyak terdapat elektron-elektron yang siap untuk bebas merdeka. Lalu jika diberi bias positif, dengan arti kata memberi tegangan potensial sisi P lebih besar dari sisi N, maka elektron dari sisi N dengan serta merta akan tergerak untuk mengisi hole di sisi P. Tentu kalau elektron mengisi hole disisi P, maka akan terbentuk hole pada sisi N karena ditinggal elektron. Ini disebut aliran hole dari P menuju N, Kalau menggunakan terminologi arus listrik, maka dikatakan terjadi aliran listrik dari sisi P ke sisi N.
Sebaliknya apakah yang terjadi jika polaritas tegangan dibalik yaitu dengan memberikan bias negatif (reverse bias). Dalam hal ini, sisi N mendapat polaritas tegangan lebih besar dari sisi P.
Tentu jawabannya adalah tidak akan terjadi perpindahan elektron atau aliran hole dari P ke N maupun sebaliknya. Karena baik hole dan elektron masing-masing tertarik ke arah kutup berlawanan. Bahkan lapisan deplesi (depletion layer) semakin besar dan menghalangi terjadinya arus. Demikianlah sekelumit bagaimana dioda hanya dapat mengalirkan arus satu arah saja. Dengan tegangan bias maju yang kecil saja dioda sudah menjadi konduktor. Tidak serta merta di atas 0 volt, tetapi memang tegangan beberapa volt di atas nol baru bisa terjadi konduksi. Ini disebabkan karena adanya dinding deplesi (depletion layer). Untuk dioda yang terbuat dari bahan Silikon tegangan konduksi adalah di atas 0.7 volt. Kira-kira 0.3 volt batas minimum untuk dioda yang terbuat dari bahan Germanium.
Sebaliknya untuk bias negatif dioda tidak dapat mengalirkan arus, namun memang ada batasnya. Sampai beberapa puluh bahkan ratusan volt baru terjadi breakdown, dimana dioda tidak lagi dapat menahan aliran elektron yang terbentuk di lapisan deplesi.
3. Zener
Phenomena tegangan breakdown dioda ini mengilhami pembuatan komponen elektronika lainnya yang dinamakan zener. Sebenarnya tidak ada perbedaan struktur dasar dari zener, melainkan mirip dengan dioda. Tetapi dengan memberi jumlah doping yang lebih banyak pada sambungan P dan N, ternyata tegangan breakdown dioda bisa makin cepat tercapai. Jika pada dioda biasanya baru terjadi breakdown pada tegangan ratusan volt, pada zener bisa terjadi pada angka puluhan dan satuan volt. Di datasheet ada zener yang memiliki tegangan Vz sebesar 1.5 volt, 3.5 volt dan sebagainya.
Ini adalah karakteristik zener yang unik. Jika dioda bekerja pada bias maju maka zener biasanya berguna pada bias negatif (reverse bias).
4. LED
LED adalah singkatan dari Light Emitting Dioda, merupakan komponen yang dapat mengeluarkan emisi cahaya. LED merupakan produk temuan lain setelah dioda. Strukturnya juga sama dengan dioda, tetapi belakangan ditemukan bahwa elektron yang menerjang sambungan P-N juga melepaskan energi berupa energi panas dan energi cahaya. LED dibuat agar lebih efisien jika mengeluarkan cahaya. Untuk mendapatkan emisi cahaya pada semikonduktor, doping yang dipakai adalah gallium, arsenic dan phosphorus. Jenis doping yang berbeda menghasilkan warna cahaya yang berbeda pula.
Pada saat ini warna-warna cahaya LED yang ada adalah warna merah, kuning dan hijau. LED berwarna biru sangat langka. Pada dasarnya semua warna bisa dihasilkan, namun akan menjadi sangat mahal dan tidak efisien. Dalam memilih LED selain warna, perlu diperhatikan tegangan kerja, arus maksimum dan disipasi daya-nya. Rumah (chasing) LED dan bentuknya juga bermacam-macam, ada yang persegi empat, bulat dan lonjong.
LED terbuat dari berbagai material setengah penghantar campuran seperti misalnya gallium arsenida fosfida (GaAsP), gallium fosfida (GaP), dan gallium aluminium arsenida (GaAsP). Karakteristiknya yaitu kalau diberi panjaran maju, pertemuannya mengeluarkan cahaya dan warna cahaya bergantung pada jenis dan kadar material pertemuan. Ketandasan cahaya berbanding lurus dengan arus maju yang mengalirinya. Dalam kondisi menghantar, tegangan maju pada LED merah adalah 1,6 sampai 2,2 volt, LED kuning 2,4 volt, LED hijau 2,7 volt. Sedangkan tegangan terbaik maksimum yang dibolehkan pada LED merah adalah 3 volt, LED kuning 5 volt, LED hijau 5 volt.
LED mengkonsumsi arus sangat kecil, awet dan kecil bentuknya (tidak makan tempat), selain itu terdapat keistimewaan tersendiri dari LED itu sendiri yaitu dapat memancarkan cahaya serta tidak memancarkan sinar infra merah (terkecuali yang memang sengaja dibuat seperti itu).
Cara pengoperasian LED yaitu :
Selalu diperlukan perlawanan deretan R bagi LED guna membatasi kuat arus dan dalam arus bolak balik harus ditambahkan dioda penyearah.
5. Aplikasi
Dioda banyak diaplikasikan pada rangkaian penyearah arus (rectifier) power suplai atau konverter AC ke DC. Di pasar banyak ditemukan dioda seperti 1N4001, 1N4007 dan lain-lain. Masing-masing tipe berbeda tergantung dari arus maksimum dan juga tegangan breakdown-nya. Zener banyak digunakan untuk aplikasi regulator tegangan (voltage regulator). Zener yang ada dipasaran tentu saja banyak jenisnya tergantung dari tegangan breakdown-nya. Di dalam datasheet biasanya spesifikasi ini disebut Vz (zener voltage) lengkap dengan toleransinya, dan juga kemampuan dissipasi daya.
LED sering dipakai sebagai indikator yang masing-masing warna bisa memiliki arti yang berbeda. Menyala, padam dan berkedip juga bisa berarti lain. LED dalam bentuk susunan (array) bisa menjadi display yang besar. Dikenal juga LED dalam bentuk 7 segment atau ada juga yang 14 segment. Biasanya digunakan untuk menampilkan angka numerik dan alphabet.